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The solution by characteristics at fixed time interval of the equations of one dimen- 
sional unsteady flow is presented in this paper. We determine the new points by initially 
fixing the time step and then use the fluid characteristic to determine the spatial location 
of the points at the next time level. The results of the propagation of a strong radiative 
shock into a density gradient for which the method was designed is also included. 

I. INTRODUCTION 

During a search for a possible origin of the high velocity neutral hydrogen gases 
at high galactic latitudes, we examined the consequences of high velocity gas 
collisions. After collision two strong radiative shocks appear and move away from 
the contact surface into gases 1 and 2, respectively (Fig. 1). Gas 2 is taken to be 
homogeneous, whereas, gas 1 is inhomogeneous. 
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FIG. 1. Shocks in colliding gases. 
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In studying the shock propagation in inhomogeneous medium, the change in 
the flow pattern behind the shock fronts caused by cooling, the reflected 
compression waves from the fronts, etc., should be included in the treatment. So 
one has to solve the hydrodynamic equations. However, there is no exact analytical 
solution. In our description of two shocks created by colliding gas clouds, the most 
practical method was found to be the method of characteristics. It has certain 
advantages over the other methods, [4]. On the other hand, there is one 
disadvantage of the solution on a characteristic mesh. One has no control over 
the points at which the solution gets determined, and in general two dimensional 
interpolation in the characteristic mesh is required. In order to overcome this 
difficulty, we define mesh points in advance in both space and time and perform 
the interpolation as the calculation proceeds [3].This has the advantage that 
interpolations are always one dimensional. 

II .  THE EQUATIONS OF MOTION IN CHARACTERISTIC FORM 

Using the method of Lagrange undetermined multipliers [2], we transform the 
equations of motion in standard from 

equation of continuity Dp 8u Dt + P -~-x = 0 '  

Du ~P 
equation of motion p ~ + ~ = O, 

Dr P Dp _ Q, 
equation of energy conservation P Dt p Dt 

where P, p, u are the gas pressure, gas density, and the fluid velocity, 

(1) 

(2) 

(3) 

1 P 1 
~ - + ~ V~ ~, 

~ , - - l p  

�89 * is the ionization energy per gram and is taken as a constant, Q is the energy 
loss per unit volume and per second, into characteristic-form: 

P 
d p + ) , T d u + O , - -  1) Q d t = 0 ,  (4a) 

along 

dx  = (u + c) dt; 

P 
dp -- y-~- du + (y - - 1 )  Q dt = O, 

(4b) 

(5a) 



along 

along 
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d x  = (u  - -  c)  tit; 

(1 --y) dp+ 2yp d c +  ( y - -  1) Q d t = 0 ,  
c 

( s )  

(6a) 

dx = udt. (6b) 

In calculations, the characteristic equations are placed in finite difference form 
by replacing the differential coefficient by a difference ratio over the interval and 
replacing other quantities by the arithmetic mean over the interval. 

III .  CALCULATION BY CHARACTERISTICS AT FIXED TIME INTERVALS 

As mentioned in the introduction, we define the mesh points in advance in both 
space and time and perform the interpolations as the calculation proceeds. 

A. Calculation of Ordinary Points 

Referring to Fig. 2, if we consider the conditions to be known at points A, B, S o 
on the base line, the determination of  conditions at a new point P is relatively 
simple for a region containing no singularities. The point P to be found is formed 

t ~ 
contact / . --lane Jp__/ ,, P 

/ A';7 / / 
. . . . .  / I 

 SW ol 

I I T 
FIG. 2. Calculation of an ordinary point by characteristics. The shock 2 is the mirror image 

of the shock 1, so for shock 2, C+ and C_, and R and L are interchanged. 
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by intersection of a streamline through B with the new horizontal line 
tt = to + At .  The selection of the time interval A t  as the calculation proceeds will 
be discussed in Section E. We next trace back from P two characteristics. One 
meets the base line to at L (the positive one), while the other intersects the line t o 
at R (the negative one). I f  MA means the value of some variable M at the point A 
and [M]A8 the average of the values at A and B,  the equations to be solved may be 
written 

[ P ] (u~ --  uL) + (~' -- 1)[Q]2,LAt = O, (7a) (P~ -- PL) + 7' - -Z ~oL 

x~ - -  xL = [u + c]~L At ,  (7b) 

along p L ;  
r P 1 

[ ] (u~ - -  UR) + (y  - -  1)[Q]~R A t  = 0, (8a) (P~ - - / 'R )  -- ~, --c- ~R 

x~ - -  XR --- [U - -  e]~R At ,  (8b) 

along p R ;  and 

[ P ]  (c, -- c,)  + (y -- 1 ) [ Q I ~ n A t = 0 ,  (9a) (1 - ~,)(P~ - PB) + 2~, - - U  , ~  

x~ --  x ,  = [u]~s At ,  (9b) 

along pB .  
The solution of  these equations by an iterative method is quite straightforward 

if we assume values initially for the mean values in square brackets. For  a first 
approximation it suffices to replace the mean values in square brackets by values 
appropriate to the initial point on the base line from which the characteristics 
are drawn. The accuracy of  this procedure depends only on the magnitude of  the 
time step used. Inaccuracies are introduced due to the fact that the characteristic 
curves have been replaced by short straight lines having appropriate slopes. These 
errors can be reduced by reducing the magnitude of the time step. The iteration 
proceeds as follows: 

(1) Solve Eq. (9b) for x~.  

(2) In order to determine conditions at P, we first require values of the flow 
variables at L and R. We can obtain them by interpolation between the values 
at A, B, and So. We first solve the following four equations simultaneously for 
xz ,  xR, (u + c)z,  and (u --  e)~ : 

(u + c)L = (u + c)A xL - xB + (u + c)~ xL - xA 
X A  X B  X B  - -  X A 

(U - -  C)R = (U - -  C)A XR - -  X~ + (U - -  C ) -  XR - -  XA 
X A  X B  X B  - -  X A  ' 

with Eqs. (7b) and (8b). 
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(3) Determine the flow variables (u, p, c) at L and R by interpolation between 
the values at A, B. 

(4) Solve Eqs. (7a) and (8a) for u~ and P~. 

(5) Solve Eq. (9a) for c~. 

(6) The terms in square brackets may now be recalculated as the average 
of the values at the old point and the new point p, and the process repeated from (1) 
until x~, u~, P~, and c~ remain uncyanged on iteration (accuracy ml0-n). The 
number of iteration required for convergence in our problem for which the method 
was designed is about 7. 

B. Calculation of  Shock Points 

Across a shock front all dependent variables are discontinuous. Since the shock 
velocity is a function of the other flow variables, the paths of shock waves have to 
be determined simultaneously with the calculation of the rest of the flow. The 
magnitude of the jumps in these variables are determined by solving the Rankine- 
Hugoniot relations which can be written as [8] 

P / P ' :  [7 -- ~/1 + (y~-- 1 ) ( - - ~ - ) ] / ( y -  1), (10a) 

P'  : pV~(1 -- pip'), (lOb) 

u' : Vs(1 -- p/p'), (lOc) 

where p : gas density in front of the shock front, a given function of x. These, 
together with an equation of state 

p ,  kp' T'  (11) 
/z'H 

give four equations to solve for five unknowns, u', T', V~, P', and p', assuming that 
conditions are known in front of the shock front. Thus, if one variable is assumed, 
we can solve for the other unknowns. In Eqs. (10a) to (11), all primed quantities 
refer to the post-schock gases, and/z' denotes the mean particle mass expressed in 
the units of the mass of proton. 

Referring to Fig. 3 the shock path is represented by SOS1, the method of deter- 
mining $1 found to be most practical being the following: 

(1) Obtain an estimate of the position of S~ by assuming the value of shock 
velocity at S 1 

Xsl = Xso + 1(So + SO At. 

The value of $1 is initially assumed to be So. 



158 CHOW 

t/  

fl 

t o 

I~G. 3. 

Confoct / 

- - - / . ,  s -2..12o I o- '  

• 

Calculation of a shock point. So& is the path of the shock. 

(2) Solve Eq. (10a) for pip'. 

(3) Solve Eq. (10b) bor P'.  

(4) Solve Eq. (10c) for u'. 

(5) The gas density, p, in front of the shock is a given function of  x. Substi- 
tution of  p into (2) yields p', the shocked gas density behind the front. 

(6) Construct a characteristic from $1 to intersect the old base line ABSo  
a t / ,  then 

Xl = Xsl - -  [u 27 C]slt At ,  (12a) 

[ ~ ]  (Us l - -  Ul) 27 ('Y - 1)[Qls~, At ,  (12b) = Ps i  - -  1'I 27 9" s~z 

where 3 is a residual which will be zero when the true solution is determined, and 
Psx : P ' ,  Usx = u'. 

(7) Solve 

(U -~- C)l : (U -~ C)B x l  - -  XSO ~- (U "~ C)S 0 x I  - -  XB 
XB X s  o x s  o - -  XB 

together with Eq. (12a) for x~. 

(8) Determine the conditions at I by interpolation between the values at So 
and B. 

(9) Calculate 3 from Eq. (12b). In general 3 is a function of  Sz, we adjust 
$1 by iteration until the residual 3 meets the requirement, say I 3 liPs ~ ~ 10 -x4. The 
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number of iteration for our problem is about 10. The pressure, particle velocity, 
etc. behind S~ are calculated at each iteration as functions of S~ by repeating 
from (1). 

C. Calculation at Contact Surface 

Referring to Fig. 4 the contact surface is represented by the point Co (at time to, 
say) which at the later time q ( = t  0 q- A t )  has moved to C~. Across a contact surface 
pressure and velocity are continuous, so the difference equations to be solved along 
C1G are 

P q  - P~ - -  7 ~['~P~ ]qa  (Uc~ - uG) -1- (y -- 1)[Q]cxG A t  = O, 

Xc~ - -  x~  = [u - -  c ]qe  At;  

(13a) 

(13b) 

FIO. 4. 
shock 2. 

t s /  
, - - /  j.o ,oo: 

/ .-y,' z "  
I . . ' / ' , '  . .~" l. 

t DE/co ~ -  I go, ,  

I ~  ' . 
o • 

Calculation at contact surface. OSx is the path of the shock, ~ OS~ the path of the 

along C1E are 

Pc~ - -  P~ + "/ [-~--] c ~  (Uc~ - Ue) + (7 - -  1)[Q]c~E A t  = O, (14a) 

Xcl - -  x z  = [u + c lq~  At;  (14b) 
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along C1Co are 

(1 -- y ) ( P q  -- Pco) + 27 [-~-] (Cc~ -- Cco) + (7 -- 1)[Qlc~co At ---- O, (15a) 
C1 Co 

Xc~ -- Xco = [U]qco At.  (15b) 

I f  we assume values for the terms in square brackets appropriate to the initial 
point on the base line from which the characteristics are drawn, then we can proceed 
in the following manner: 

Solve Eq. (15b) for x q ,  the new position of the contact plane at time (1) 
t =  t 1 . 

(2) Solve 

- -  X G  - -  X A  
(u - C ) G - -  XG XC~ (U - -  eL, + (U - -  C)~o, 

X A  - -  X C  o X C  o - -  X A  

- -  X E  - -  X D  XE XC~ (U + C)D + (U + C)~o, 
(u + c)~ = x ~  - -  Xco Xco - -  x ~  

together with Eqs. (13b) and (14b) for x c ,  x e .  The conditions at A, D, and Co are 
are assumed to be known. 

(3) Interpolate conditions at the points G and E between the values at 
A, Co, and D. 

(4) Solve Eqs. (13a) and (14a) for u q  and Pc 1 . 

(5) Solve Eq. (15a) for Ccl. 

(6) The terms in square brackets may now be recalculated as the average 
of  the values at the points Co and C1, and the process repeated from (1) until all 
quantities have converged. 

In general the pressure and velocity are continuous across a contact surface; 
the temperature and density are not. At the contact surface we, therefore, have 
four unknowns, the continuous pressure and velocity and the two values of  the 
sound speeds--cL to the left, and cR to the right of  the contact surface. We, there- 
fore, must introduce two points at the contact surface, one each for the fluid 
immediately to the left and to the right of the contact plane. Equations (i 3) and (14) 
are then applied on the left point using CL, while Eq. (14) and (15) are used with 
cR on the right point. The four equations may then be solved for P q ,  u q ,  CL,  CR �9 
In our problem both gas 1 and 2 are assumed to have the same physical properties; 
thus, the temperature (and, hence, the sound speed) is also continuous across the 
contact plane if we start with an equal temperature across it. We, therefore, do not 
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need to introduce two points at the contact surface and to use cz on the left point 
and CR on the right point. 

D. Interpolation o f  an Additional Point Near the Shock 

Referring to Fig. 5 the conditions at points So, A, etc. on the line to are given 
from previous computations. The determination of the point nearest to the shock 
front requires special study. 

t ~ 

t l  

to 

contact / 

/ i 
"------  gas l 

• 

FIG. 5. 

> 
Calculation of  the point  nearest to the shock. 

We first draw a (negative) characteristic from S O to intersect the horizontal line 
tl at point P, and trace back next from point P two characteristics, one meets the 
base line to at F(i.e., a streamline through point F), while the other intersects the 
base line to at L. 

The difference equations to be solved along PSo are 

f (Pv - -  Pso) - -  7 L-~- (ue - -  Uso) + (7 - -  1)[Qlvso A t  := O, (16a) 
PS o 

x v  - -  Xso = [u - -  e]vso At;  (16b) 

along P L  are 

[ P ] (u. -- uD + (7 -- 1)[Q]pLAt = O, (17a) ( P e - -  PL) + 7 ~ eL 

xe  --  XL : [u + e]pL At;  (17b) 
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along P F  are 

(1 - -y ) (Pv- -Pv)+2y[4 ]  (cv-- ce)+(y- -  1)[a]vvAt =07 (18a) 
L C A P F  

x v  - -  x v  = [u]vv At .  (18b) 

We first assume values for the terms in square brackets appropriate to the initial 
points on the base line from which the characteristics are drawn, and then proceeds 
as follows: 

(1) Solve Eq. (16b) for x~, the position of the point nearest to the schock. 

(2) Solve the following four equations simultaneously for XL,  XF,  (U - -  C)L, 

and (u)e : 

(u + C)L = (U + C)~ o XL - -  XA X~ xso xA + (u + c ) a ~ -  Xso 
_ _  _ _  X s o '  

X F - -  X A X F  - -  X S o  

(U)F = (u)s  o + (U)A 
X s  o - -  X A  X A  - -  X S  o ~ 

with Eqs. (17b) and (18b). 

Interpolate conditions at the points F and L between the values at points (3) 
S o , A .  

(4) 
(5) 
(6) 

Solve Eqs. (16a) and (17a) for ue and P p .  

Solve Eq. (18a) for ce .  

The terms in square brackets may now be calculated as the average of 
the values at the points P, L, F, and S o ,  and the process repeated from (1) until all 
quantities have converged. 

E. Determinat ion o f  the Time S tep  

In the calculation of new points by characteristics at fixed time interval, we have 
to define the time step first. Referring to Fig. 6, in order to avoid a situation in 
which a characteristic would intersect a shock world line between time steps, we 
draw two characteristics from points So and A (first tabular point behind shock So) 
intersecting at P. The following equation hold to a first order approximation 

along P S o ,  and 

along PA.  

xl, - -  xso = (u - -  C)so At ,  

xp - -  xA = (u + c)a d t, 

(19) 

(20) 
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Determination of the time step. 

f 

Solving Eqs. (19) and (20) yields 

X s o  - -  X A 

t .7_ (g  ~ -  C)A - -  (U - -  C)S 0 ' (21) 

since we have two shocks spreading out in our problems we will call Ah and At~ 
the time calculated for gas 1 and gas 2, respectively. Let Attain denote the smaller 
of  Atx and At2, and Atfix the fixed time interval chosen in advance. If  Attain is 
smaller than Aff ix ,  we  set the time interval At ----- /[tfi  x and go through the com- 
putations from Section A to Section C, but discard Section D; on the other hand 
if Attain is greater than Atfix, we set At = const • Atmin and go through all 
computations from Section A to Section D, i.e., we generate a new point next to 
the shock point $1 at this time. The constant (the ratio At/Atmin) is used to control 
the number of points. 

We futher use Courant stability condition to limit time step and to maintain 
stability. Since our method is essentially Lagrangian, this means that we must have 

At < Ax/C, 

where Ax is the interval over which the interpolation is performed. 

IV. AN EXAMPLE- HIGH-VELOCITY CLOUD COLLISIONS 

We calculated the consequences when high momentum extragalactic clouds 
collide with galactic gases; the extragalactic gases having initial velocities of  about 
500 km/sec with respect to local standard of rest [6]. After collision, two strong 
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radiative shocks appear and move away from the contact surface into galactic and 
extragalactic gases, respectively. The calculations were done for an initial density 
ratio pl/p~ of  unity at t = 0 (i.e., with equal densities in the galactic and extra- 
galactic gases at collision) under the following physical conditions or restrictions: 

(1) The extragalactic cloud is taken to be homogeneous, and the galactic 
gas density, nn ,  is represented by: 

nn = no exp( - -z /qo)  H-atoms/cm 3, 

where z is measured in parsec above the galactic plane, and the scale height 
qo = 120 parsec, no = 0.7 H-atoms/cm 3. 

This layer ends at about z = 600 parsec, beyond which lies the corona. The 
shocks are assumed to begin at this height. 

(2) The radiation loss rates are taken from Pottasch (1965), with H, He, 
O, C, Mg, Si, and Ne abundances of  1 : 10 -1 : 10 -3 : 10 -3.3 : 10 -4 : 10 -4 : 10 -4 and 
ionization equilibria according to [5]. Although hydrogen and helium dominate in 
abundances, the energy losses are mainly caused by collisional transitions in the 
heavier ions. 

(3) Both the preshock and the postshock gases are taken to be perfect 
gases: 

The notations are the usual, tz and/z '  denote mean particle mass expressed in the 
units of  the mass of  proton. 

The postshock gas is a rarefied plasma, in which the density is still low and the 
mean free path of  the particles is very large, so that the mean energy of  the 
Coulomb interaction between neighboring particles is small in comparison with 
the mean thermal energy of  the particles and we can neglect it; thus, the postshock 
gas can be considered as a perfect gas. 

(4) The precursor effects upon the preshock state are neglected, and these 
uniform conditions ahead of  the shock front are adopted: the density, pressure 
and temperature take unperturbed values, and in particular, both gases are taken 
to be originally at temperature of about 100 K. 

(5) Values of the ionization parameters are taken from Savedoff (1967): 

/Zl = /z2  = 1.273, /z 1' = / ~ '  = 0.625, /z~ = 1.2, and Vi = 50 km/sec, 

where ~ V~ 2 represents the ionization energy per gram. Values of some initial param- 
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eters connected with the two shocks created by  a gas collision at relative velocity 
o f  about  500 km/sec are also taken f rom [8]: 

Pa/Pl' = 0.242, S 1 = 330 km/sec, $2 = 170 km/sec, 

TI' = T~' = 1.52 x 106 K, 

where $1 and $2 are the galactic shock velocity and the cloud shock velocity relative 
t o  the galactic gas, respectively. We work in a coordinate system in which the 
galactic gas is at rest and the extragalactic gas approaches it with a velocity o f  

,o  ~ 

8 -  

6 

2 

t = 4.86,~x Idyears 

Sz = 0 .242x  IO~cm/sec 
$2 = O. 126 x IO~cm/sec 

T2x 113- 5 

m l ~  •  p~ xtd2 
contdcr 
plane 

S~ 

2 6  
xIO 

I I . . . . .  1 . .1  I 

5,02 4.96 4.90 4.84 4.78 4.72 4. 66 4s 

�9 X (30~pc)- ' ~-To Galactic Plane 

FIG. 7. Spatial temperature, pressure, and density profiles for the gases behind shocks at 
t = 4.863 • 10 v yr. 
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about 500 kin/see. Index I is reserved for galactic gas and index 2, for extragalactic 
gas. 

The results have been given in detail by [1]. We summarize them in the following 
manner. 

At first the spatial temperature profile increases smoothly from the galactic 
shock front to the cloud shock front, the negative temperature gradient becoming 
more negative with increasing time. The pressure and density profiles decreasing 
smoothly from the galactic shock front to the cloud shock front, although the 

i 0  ~ 

8 

IO I 

8 

6 

I I I l I 

t : Z l 4 x l O ~ y c o r $  
S~= O.ZO 8 x l O g c r a ~ e  

P~. ',lo'z 

4 I _ _  I _ . .  I �9 . I I . . . .  

4 . 4 4  4. ,~8 4 . 3 2  4 2 6  4 . 2 0  4..14 4 . 0 8  

X ( lO~pc )  "----- ' ->To Galactic Rcne 

FIG. 8. Spatial temperature pressure, and density profiles for the gases behind the galactic 
shock at t = 7.14 x I0 ~ yr. Temperature inversion begins to develop. 

absolute density and pressure increase slightly with increasing time. This temporal 
increase gradually slows after about 7 • 105 years ( at this age, T a ~- 5.8 x 105 K), 
when there also appears on the galactic side a "depression" in the initial smooth 
temperature and pressure profiles as shown in Figs. 7-9, Subsequently, this 
"depression" acquires the form of  a "deep-well" as shown in Fig. 10. Figure I 1 
shows the development of the pressure dip. 

This differs from those derived from steady state solutions, which predicts that 
these dips should appear first at the contact surface. These previous treatments 
neglect the change in the flow pattern caused by the cooling contraction of the 
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X( 102pC ) ~ To Galactic Plone 

FIG. 9. Spatial temperature, pressure, and density profiles for the gases behind the galactic 
shock at t = 9.041 • 105 yr. 

postshock gas. The cooling causes the shocks to slow down with respect to the gas 
they are penetrating, and this gives rise to complications behind the shock fronts 
describable as compression and expansion waves. For  shocks in colliding non- 
homogeneous gas clouds, the complications behind the shock fronts are far 
greater, because of  both the cooling contraction of  the postshock gas and the 
effects of  external density and pressure variations upon the shock propagation. 
The detail discussion can be found in the paper by Chow and Savedoff [1]. A 
quantitative condition for the growth of the dips follows on considering perturb- 
ations of  the flow. We consider a small perturbation 6u', 6p', 6p', etc. on a desired 
solution u'(x, t), p'(x, t) etc. and investigate whether the perturbation grows with 
increasing time [9]. To do this we replace u' etc. by u' q- 6u' etc. in Eqs. (1)-(3) 
and get a set of  three simultaneous linear differential equations for 6u', ~p', etc. 
Their coefficients depend on the desired solutions u', p ' ,  etc. We treat these 
coefficients as constants in a small region and look for solutions of  the form 
6u' = 6u 0 exp(~t + ikx),)etc., where u0, etc., and k, ~ are constants and k is 
real. Substitution of  these into the simultaneous linear differential equations for 
6u', ~p', etc. leads to three simultaneous homogeneous linear equations in 6u0, 

58IlIzlz-= 
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I 0 ~  I I I I J l - 
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FIG. 10. Spatial temperature, pressure, and density profiles for the gases behind the galactic 
shock at t = 9.615 x l0 s yr. The gas at the dip has cooled to 20,000 K. 

3p0, etc. The vanishing of  the determinant of  these equations yields an equation 
connecting k and ~. By solving this equation for c~ with a given k, we can determine 
whether a given Fourier component  of  the perturbation 3u' = ~u0 exp(~t q- ikx) 
etc. grows with increasing time. The real part  of  the sum of  the three roots of  ~ is 
independent of  k and satisfies 

1, [ ( 7 + 2 )  dp' ~,-- 1 [ ~ 
Re(Z'~) ~> 

It  is seen that if  Re(Za) > 0, then there exists at least one root with ~ > 0. Hence, 
during compression the system is unstable, and the growth of the dips is formed 
both by the compression and the energy loss term for T '  > 3 • 105 K (for 
T '  > 3 • 10 a K, (~Q/~T')o. < 0, [5]). For  lower temperature, (~Q/~T'),,. > O, 
hence Re(2J~) may be negative, but we can not find any useful upper limit on 
because of  algebraic complexity. In our calculations which end at 2 • 104 K, it 
takes only three steps (of 5000 years per step) to evolve f rom 2 • 105 K to 
2 • 104 K. I t  is desirable to repeat this part  calculations with small time intervals 
to better determine the evolution of  the dips when radiation losses decreases with 
decreasing temperature. 
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The reliability of our calculations has been examined by checking the consistency 
with the following conservation laws: 

Mass conservation 
, X I (I) 

p l X l ( 1 )  = f p t ' ( x )  d x ,  
e 

where x~ denotes the position of the contact surface. This relation says that the 
total mass within the post-shock region is equal to the total mass swept by the 
shock. 

Energy conservation 

(pl'Ul')e dt q- (~Pl' -Jr- ~01-1 ~- ~Pl v ~ ) dx 
1 

ft 1 Tt ' , / 2  1 ' l/2~ II  - -  (~-Pl' - ~  2 Y 1  Ul  - ~  ~P1 r i / d x  = Q dx dt, 
dd 

2 

4.27 4.21 4.15 4.09 4.03 3.97 3.9t 3.85 3.79 

X (102pc) ~ To Golactir Prone 

FIG. 11. The development os the pressure dips. 
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where tl and  t~ writ ten at the bo t tom of  the integral signs means that the integrals 
are evaluated at times q and  t~, respectively, and  (Pu)c means  that  Pu is evaluated 
at the contact  surface. 

M o m e n t u m  conservat ion 

fs (pl')~ dt = f~ pl' Ul' dX -- fq pl' Ul' dX. 

The computa t ions  for the galactic shock from tl = 7.14 • 105yr to 
t~ = 9.467 • 105 yr gav e 

d(mass)  = 6.7 • 10 -~, d ( m o m e n t u m )  = 5.5 • 10 -4 
p1xl(1) f~ (Pl')e dt 

and 

A(energy) - -  1.4 • 10 -~, 
tPl 1 )c dt 

where A (mass) denote the difference over the right and the left sides of the mass 
conservation equation. This integral test indicates that  there is no large systematic 
errors in our  programs. 
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